Блок питания сотового телефона схема. Разбираем зарядное устройство от мобильного телефона Siemens. Принципы создания схем для зарядных устройств

Количество мобильных средств связи, находящихся в активном пользовании, постоянно растет. К каждому из них идет зарядное устройство, поставляемое в комплекте. Однако далеко не все изделия выдерживают сроки, установленные производителями. Основные причины заключаются в низком качестве электрических сетей и самих устройств. Они часто ломаются и не всегда возможно быстро приобрести замену. В таких случаях требуется схема зарядного устройства для телефона, используя которую вполне возможно отремонтировать неисправный прибор или изготовить новый своими руками.

Основные неисправности зарядных устройств

Зарядное устройство считается наиболее слабым звеном, которым укомплектованы мобильные телефоны. Они часто выходят из строя из-за некачественных деталей, нестабильного сетевого напряжения или в результате обычных механических повреждений.

Наиболее простым и оптимальным вариантом считается приобретение нового прибора. Несмотря на различие производителей, общие схемы очень похожи друг на друга. По своей сути, это стандартный блокинг-генератор, выпрямляющий ток с помощью трансформатора. Зарядники могут отличаться конфигурацией разъема, у них могут быть разные схемы входных сетевых выпрямителей, выполненные в мостовом или однополупериодном варианте. Существуют различия в мелочах, не имеющих решающего значения.

Как показывает практика, основными неисправностями ЗУ являются следующие:

  • Пробой конденсатора, установленного за сетевым выпрямителем. В результате пробоя повреждается не только сам выпрямитель, но и постоянный резистор с низким сопротивлением, который просто сгорает. В подобных ситуациях резистор практически выполняет функции предохранителя.
  • Выход из строя транзистора. Как правило, многие схемы используют высоковольтные элементы повышенной мощности с маркировкой 13001 или 13003. Для ремонта можно воспользоваться изделием КТ940А отечественного производства.
  • Не запускается генерация из-за пробоя конденсатора. Выходное напряжение становится нестабильным, когда поврежденным оказывается стабилитрон.

Практически все корпуса зарядных устройств являются неразборными. Поэтому во многих случаях ремонт становится нецелесообразным и неэффективным. Гораздо проще воспользоваться готовым источником постоянного тока, подключив его к нужному кабелю и дополнив недостающими элементами.

Простая электронная схема

Основой многих современных зарядных устройств служат наиболее простые импульсные схемы блокинг-генераторов, содержащие всего лишь один высоковольтный транзистор. Они отличаются компактными размерами и способны выдавать требуемую мощность. Эти устройства совершенно безопасны в эксплуатации, поскольку любая неисправность ведет к полному отсутствию напряжения на выходе. Таким образом, исключается попадание в нагрузку высокого нестабилизированного напряжения.

Выпрямление переменного напряжения сети осуществляется диодом VD1. Некоторые схемы включают в себя целый диодный мост из 4-х элементов. Ограничение импульса тока в момент включения производится резистором R1, мощностью 0,25 Вт. В случае перегрузки он просто сгорает, предохраняя всю схему от выхода из строя.

Для сборки преобразователя используется обычная обратноходовая схема на основе транзистора VT1. Более стабильная работа обеспечивается резистором R2, запускающим генерацию в момент подачи питания. Дополнительная поддержка генерации происходит за счет конденсатора С1. Резистор R3 ограничивает базовый ток во время перегрузок и перепадов в сети.

Схема повышенной надежности

В данном случае входное напряжение выпрямляется за счет использования диодного моста VD1, конденсатора С1 и резистора, мощностью не ниже 0,5 Вт. В противном случае во время зарядки конденсатора при включении устройства, он может сгореть.

Конденсатор С1 должен обладать емкостью в микрофарадах, равной показателю мощности всего зарядника в ваттах. Основная схема преобразователя такая же, как и в предыдущем варианте, с транзистором VT1. Для ограничения тока используется эмиттер с датчиком тока на основе резистора R4, диода VD3 и транзистора VT2.

Данная схема зарядного устройства телефона ненамного сложнее предыдущей, но значительно эффективнее. Преобразователь может стабильно работать без каких-либо ограничений, несмотря на короткие замыкания и нагрузки. Транзистор VT1 защищен от выбросов ЭДС самоиндукции специальной цепочкой, состоящей из элементов VD4, C5, R6.

Необходимо ставить только высокочастотный диод, иначе схема вообще не будет работать. Данная цепочка может устанавливаться в любых аналогичных схемах. За счет нее корпус ключевого транзистора нагревается гораздо меньше, а срок службы всего преобразователя существенно увеличивается.

Выходное напряжение стабилизируется специальным элементом - стабилитроном DA1, установленным на выходе зарядки. Для задействован оптрон V01.

Ремонт зарядника своими руками

Обладая некоторыми знаниями электротехники и практическими навыками работы с инструментом, можно попытаться отремонтировать зарядное устройство для сотовых телефонов собственными силами.

В первую очередь нужно вскрыть корпус зарядника. Если он разборный, потребуется соответствующая отвертка. При неразборном варианте придется действовать острыми предметами, разделяя зарядку по линии стыка половинок. Как правило, неразборная конструкция свидетельствует о низком качестве зарядников.

После разборки осуществляется визуальный осмотр платы с целью обнаружения дефектов. Чаще всего неисправные места отмечены следами от сгорания резисторов, а сама плата в этих точках будет более темной. На механические повреждения указывают трещины на корпусе и даже на самой плате, а также отогнутые контакты. Вполне достаточно загнуть их на свое место в сторону платы, чтобы возобновить поступление сетевого напряжения.

Нередко шнур на выходе устройства оказывается оборванным. Разрывы возникают чаще всего возле основания или непосредственно у штекера. Дефект выявляется путем и замеров сопротивления.

Если видимые повреждения отсутствуют, транзистор выпаивается и прозванивается. Вместо неисправного элемента подойдут детали от сгоревших энергосберегающих ламп. Все остальные делали - резисторы, диоды и конденсаторы - проверяются таким же образом и при необходимости меняются на исправные.

Сейчас уже все производители сотовых телефонов договорились и все, что есть в магазинах, заряжается через USB-разъем. Это очень хорошо, потому что зарядные устройства стали универсальными. В принципе, зарядное устройство для сотового телефона таковым не является.

Это только импульсный источник постоянного тока напряжением 5V, а собственно зарядное устройство, то есть, схема следящая за зарядом аккумулятора, и обеспечивающая его заряд, находится в самом сотовом телефоне. Но, суть не в этом, а в том, что эти «зарядные устройства» сейчас продаются повсеместно и стоят уже так дешево, что вопрос с ремонтом отпадает как-то сам собой.

Например, в магазине «зарядка» стоит от 200 рублей, а на известном Алиекспресс есть предложения и от 60 рублей (с учетом доставки).

Принципиальная схема

Схема типовой китайской зарядки, срисованная с платы, показана на рис. 1. Может быть и вариант с перестановкой диодов VD1, VD3 и стабилитрона VD4 на отрицательную цепь - рис.2.

А у более «продвинутых» вариантов могут быть выпрямительные мосты на входе и выходе. Могут быть и отличия в номиналах деталей. Кстати, нумерация на схемах дана произвольно. Но сути дела это не меняет.

Рис. 1. Типовая схема китайского сетевого зарядного устройства для сотового телефона.

Несмотря на простоту, это все же неплохой импульсный блок питания, и даже стабилизированный, который вполне сгодится и для питания чего-то другого, кроме зарядного устройства сотового телефона.

Рис. 2. Схема сетевого зарядного устройства для сотового телефона с измененным положением диода и стабилитрона.

Схема сделана на основе высоковольтного блокинг-генератора, широта импульсов генерации которого регулируется при помощи оптопары, светодиод которой получает напряжение от вторичного выпрямителя. Оптопара понижает напряжение смещения на базе ключевого транзистора VТ1, которое задается резисторами R1 и R2.

Нагрузкой транзистора VТ1 служит первичная обмотка трансформатора Т1. Вторичной, понижающей, является обмотка 2, с которой снимается выходное напряжение. Еще есть обмотка 3, она служит и для создания положительной обратной связи для генерации, и как для источника отрицательного напряжения, который выполнен на диоде VD2 и конденсаторе С3.

Этот источник отрицательного напряжения нужен для снижения напряжения на базе транзистора VТ1, когда оптопара U1 открывается. Элементом стабилизации, определяющим выходное напряжение, является стабилитрон VD4.

Его напряжение стабилизации таково, что в сумме с прямым напряжением ИК-светодиода оптопары U1 дает именно те самые необходимые 5V, которые и требуются. Как только напряжение на С4 превышает 5V, стабилитрон VD4 открывается и через него проходит ток на светодиод оптопары.

И так, работа устройства вопросов не вызывает. Но что делать, если мне нужно не 5V, а, например, 9V или даже 12V? Вопрос такой возник вместе с желанием организовать сетевой блок питания для мультиметра. Как известно, популярные в радиолюбительских кругах, мультиметры питаются от «Кроны», - компактной батареи напряжением 9V.

И в «походнополевых» условиях это вполне удобно, но вот в домашних или лабораторных хотелось бы питания от электросети. По схеме, «зарядка» от сотового телефона в принципе подходит, в ней есть трансформатор, и вторичная цепь не контактирует с электросетью. Проблема только в напряжении питания, - «зарядка» выдает 5V, а мультиметру нужно 9V.

На самом деле, проблема с увеличением выходного напряжения решается очень просто. Нужно, всего лишь, заменить стабилитрон VD4. Чтобы получить напряжение, подходящее для питания мультиметра, нужно поставить стабилитрон на стандартное напряжение 7,5V или 8,2V. При этом, выходное напряжение будет, в первом случае, около 8,6V, а во втором около 9,ЗV, что, и то и другое, вполне годится для мультиметра. Стабилитрон, например, 1N4737 (это на 7,5V) или 1N4738 (это на 8,2V).

Впрочем, можно и другой маломощный стабилитрон на данное напряжение.

Испытания показали хорошую работу мультиметра при питании от такого источника питания. Кроме того, был попробован и старый карманный радиоприемник с питанием от «Кроны», -работал, только помехи от блока питания слегка мешали. Напряжением в 9V дело совсем не ограничивается.

Рис. 3. Узел регулировки напряжения для переделки китайского зарядного устройства.

Хотите 12V? - Не проблема! Ставим стабилитрон на 11V, например, 1N4741. Только нужно конденсатор С4 заменить более высоковольтным, хотя бы на 16V. Можно получить и еще большее напряжение. Если вообще удалить стабилитрон будет постоянное напряжение около 20V, но оно будет не стабилизированное.

Можно даже сделать регулируемый блок питания, если стабилитрон заменить регулируемым стабилитроном, таким как TL431 (рис. 3). Выходное напряжение можно регулировать, в этом случае, переменным резистором R4.

Каравкин В. РК-2017-05.

Как правило ремонт такого недорогого девайса экономически невыгоден.
Особенно в небедных странах. Средняя цена 5 долларов.
Но бывает такое, что нет лишних денег, но есть время и запчасти.
Нет магазина поблизости. Не позволяют обстоятельства. Тогда речь не идет о цене.

В моем случае все было просто — сломалось одно из двух моих зарядных Nokia AC-3E , друзья принесли мешок поломаных зарядных. Среди них было с десяток фирменных нокиевских зарядок. Грех было не взяться.

Поиски схемы ни к чему не привели, поэтому взял похожую и переделал под AC-3E. По подобной схеме сделано множество зарядных для мобильных телефонов. Как правило разница несущественна. Иногда изменены номиналы, чуть больше или чуть меньше элементов, иногда добавлена индикация заряда. А в основном одно и то же.
Поэтому данное описание и схема пригодятся для ремонта не только AC-3E.

Инструкция по ремонту проста и написана для неспециалистов.
Схема кликабельна и хорошего качества.


ТЕОРИЯ.

Устройство представляет собой блокинг-генератор, работающий в автоколебательном режиме. Питает его однополупериодный выпрямитель (D1, C1) напряжением примерно +300 В. Резистор R1, R2 ограничивает пусковой ток устройства и выполняет роль предохранителя. Основу блокинг-генератора составляют транзистор MJE13005 и импульсный трансформатор. Необходимым элементом, блокинг-генератора является цепь положительная обратная связь образована обмоткой 2 трансформатора, элементами R5, R4 C2.

Стабилитрон 5v6 ограничивает напряжение на базе транзистора MJE13005 в пределах пяти вольт.

Демпферная цепочка D3, C4, R6 ограничивают выбросы напряжения на обмотке 1 трансформатора. В момент запирания транзистора эти выбросы могут превышать напряжение питания в несколько раз, поэтому минимально допустимое напряжение конденсатора C4 и диода D3 должно быть не ниже 1 кВ.

ПРАКТИКА.

1. Разборка. Саморезы держащие крышку зарядного в данном устройстве имеют вид треугольной звездочки. Специальной отвертки под рукой как правило нет, поэтому приходится выкручиваться кто как может. Я откручивал отверткой, которая за время эксплуатации сама заточилась под всякие крестики.

Иногда зарядные собраны без болтов. В таком случае половинки корпуса склеены. Это говорит о невысокой стоимости и качестве устройства. Разбирать такое ЗУ чуть сложнее. Нужно раколоть корпус неострой отверткой, аккуратно надавливая на стык половинок.

2. Внешний осмотр платы. Более 50% дефектов можно обнаружить именно за счет внешнего осмотра. Сгоревшие резисторы, потемневшая плата укажут вам место дефекта. Лопнувший корпус, трещины на плате будут говорить о том что устройство роняли. Эксплуатируются зарядные в экстримальных условиях, поэтому падения отовсюду нередкая причина выхода из строя.

В пяти из десятка ЗУ которые довелось делать мне, были банально отогнуты контакты через которые 220 вольт поступают на плату.

Для исправления, достаточно чуть отогнуть контакты по направлению к плате.
Проверить контакты виноваты или нет, можно подпаяв к плате сетевой шнур, и замеряв напряжение на выходе — красный и черный провода.

3. Оборванный шнур на выходе ЗУ. Рвется как правило у самого штеккера или у основания зарядного. Особенно у любителей поговорить во время зарядки телефона.
Прозванивается прибором. В центр разъема вставляете вывод тонкой детали и измеряете сопротивление проводов.

4. Транзистор + резисторы. В случае если нет видимых повреждений, прежде всего нужно выпаять транзистор и прозвонить его. Нужно при этом иметь ввиду, что у транзистора
MJE13005 база находится справа, но бывает и наоборот. Транзистор может стоять другого типа, в другом корпусе. Допустим MJE13001 видом как советский кт209 с базой слева.

Вместо него я ставил MJE13003. Можно поставить транзистор из любой сгоревшей лампы — экономки. В них как правило сгорает нить накала самой колбы, а два высоковольтных транзистора остаются целыми.

5. Последствия перенапряжения. В простейшем случае выражаются в пробитых накоротко диоде D1 и оборванном резисторе R1. В более сложных случаях сгорает транзистор MJE13005 и раздувает конденсатор C1. Всё это элементарно меняется на такие же или подобные детали.

В последних двух случаях нужно будет кроме замены сгоревших проводников, проверить резисторы вокруг транзистора. Со схемой это будет несложно сделать.

Постоянное обновление парка сотовых телефонов привело к бесполезному хранению и накоплению сетевых адаптеров, которые по параметрам и разъёму не могут использоваться на других моделях.

Возможно использование адаптеров сотовых телефонов для зарядки мощных автомобильных аккумуляторов.

Прямое подключение адаптера для зарядки автомобильных аккумуляторов невозможно - низкое выходное напряжение в пределах 4-8 вольт при токе заряда до 200 мА при необходимых параметрах 12 вольт 10 ампер. При рассмотрении схем обратноходовых импульсных источников питания, входящих в адаптеры, выявлено, что они содержат: сетевой выпрямитель с фильтром; блокинг-генератор с положительной обратной связью от отдельной обмотки; выходной низковольтный выпрямитель.

Стабилизация вторичного напряжения в некоторых адаптерах выполняется с помощью оптопары, включенной светодиодом к выходному напряжению выпрямителя, а фототранзистором в базовую цепь транзистора генератора преобразователя. Мощность адаптеров сотовых телефонов не превышает 3-5 ватт.

Для получения мощного зарядного устройства из адаптера сотового телефона достаточно схему выпрямителя дополнить усилителем мощности.

Удобство использования сотовых адаптеров заключается в отсутствии необходимости конструирования блокинг- генератора, намотки импульсного трансформатора, установки режима генерирования при значительных колебаниях сетевого напряжения. Компактные габариты печатной платы адаптера совместно с усилителем мощности и выходным выпрямителем занимают незначительное место, а по весу в15-20 раз меньше, чем зарядные устройства на силовых трансформаторах.
Практически такое устройство - карманного типа.

Основные технические характеристики:
Напряжение сети 165-265 Вольт.
Номинальное выходное напряжение 12 Вольт
Максимальный ток нагрузки 6 Ампер
Частота преобразования 50 -70 кГц
Вес 200 грамм
Максимальная выходная мощность 100 ватт

Резистор R1 защищает диодный мост VD1 от пробоя при бросках зарядного тока конденсатора С3.
Светодиод HL1 указывает на наличие сетевого питания.

Схема импульсного генератора на транзисторе VT1 с внешними RC цепями (помещённая в рамку) относится к адаптеру и может отличаться по компоновке, нумерация деталей адаптера условная.
Резистор R3 создаёт начальное смещение на базу транзистора VT1, для устойчивой генерации в указанном пределе напряжения сети.

Конденсатор С7 заряжается через диод VD3 до амплитуды напряжения обратного хода, которое больше напряжения стабилизации стабилитрона VD4, в результате чего стабилитрон открывается, напряжение на базе транзистора VT1 становится отрицательным и препятствует его открыванию с паузой больше времени импульса. Ток созданный резистором R4 протекает через открытый стабилитрон VD3 на конденсатор С5, разряжая его. Напряжение на этом конденсаторе уменьшается, на базе транзистора VT1 - растёт. При достижении достаточной величины (более 0,4 Вольта) транзистор VT1 откроется, пауза закончится, начнётся новый цикл генерации.

Напряжение положительной обратной связи с обмотки 3Т2 через конденсатор С4 и резистор R4 откроет транзистор VT1, ток через обмотку 1Т2 лавинно возрастёт и энергия накопленная трансформатором Т2 передастся в виде прямоугольного импульса в базовую цепь усилителя мощности на полевом транзисторе VT2.

Импульс напряжения с обмотки 2Т2 через конденсатор С7 и регулятор тока заряда - R8 поступит на базу транзистора VT2 усилителя мощности. Резистор R9 защищает затвор полевого транзистора от ёмкостных сверхтоков.

От перегрузки транзистора VT2 большими токами в цепи истока установлена схема защиты на параллельном стабилизаторе DA1. Повышение напряжение на резисторе R12 приводит к открытию таймера на микросхеме DA1 и шунтированию цепи затвора.

Ферритового трансформатор Т3, от блоков питания компьютеров типа АТ/ТХ или от мониторов используются в зарядном устройстве без переделок. Первичная обмотка (она имеет до трёх выводов) включается в цепь стока транзистора VT2, к ней параллельно подключена демпфирующая цепь C8,R10, VD6 - гашения импульсов тока обратного хода, которые могут пробить транзистор или привести к пробою в обмотках трансформатора T3.

Дополнительная цепь защиты на диоде VD7 установлена параллельно транзистору VT2.
Усилитель мощности на полевом транзисторе VT2 через трансформатор T3 передаёт в нагрузку усиленный высокочастотный сигнал, который после выпрямления лавинными диодами сборки VD8 питает зарядным током кислотный аккумулятор GB1. Амперметр РА1 позволяет визуально установить зарядный ток аккумулятора регулятором тока – R8. Светодиод HL2 контролирует полярность подключения аккумулятора GB1 в зарядную цепь и наличие напряжения на выходе устройства.

В импульсных преобразователях применяются полевые транзисторы с индуцированным п- каналом на напряжение 600-800 Вольт и током более трёх ампер с усилением более 1000мА/В. При нулевом напряжении на затворе транзистор закрыт и открывается положительным напряжением прямоугольной формы. Выбор в усилителе мощности полевого транзистора вместо биполярного выгоден по высокой скорости закрывания, что приводит к снижению потерь на нагрев. Зарядное устройство собрано на монтажной плате, плата адаптера установлена на дополнительных стойках.

Большая часть радиодеталей в зарядном устройстве используется от разобранных блоков питания компьютеров и мониторов.

Резисторы типа Р2-23. Транзистор VT1 - бюджетный на напряжение 400 Вольт и ток до одного ампера с хорошим усилением более 200.

Полевой транзистор VT2 с крутизной более 1000 мА/В при напряжении более 600 Вольт и токе 3-6 Ампер серий 2СК 1317-1460 или IRF 740-840.
Трансформаторы: Т1- EE-25-01, 3PMCOTC210001. T2 - HI- POT. T3 - HI-POT TNE 9945, ВСК – 01С, АТЕ133N02, R320.
Оксидный конденсатор C4 фирмы «Nichicon» или HP3.
Все диоды импульсные с высоким быстродействием. Диоды выпрямителя VD6 заменимы на КД213Б.

Примерные значения обмоток трансформаторов:
Т1- сердечник 3*3 2*30 витков 0,6мм
Т2- сердечник 3*3. 1-360 витков 0,1мм. 2- 20 витков 0,2. 3- 36 витков 0,1.
Т3- сердечник 12*12. 1- 42 витка 0,6. 2,3 - 2*6 витков 1,6мм.

Полевой транзистор VT2 крепится на радиатор размерами 40*30*30. Клеммы ХТ3, ХТ4 подключаются к аккумулятору многожильным медным проводом в виниловой изоляции сечением 4мм. На концах устанавливаются зажимы типа «Крокодил».

Наладку устройства начинают с проверки работоспособности платы адаптера. Диод и конденсатор выпрямителя адаптера в схеме не используется, сигнал на усилитель мощности берётся непосредственно с обмотки трансформатора 2Т2,через разделительный конденсатор C7. Резистор R7 создаёт начальное смещение на затворе транзистора VT2.

При подключенном аккумуляторе резистором R8 выставляется зарядный ток в 0,05 С, где С - ёмкость аккумулятора. Время заряда определяется техническим состоянием аккумулятора и как правило не превышает 5-7 часов. При обильном кипении (электролизе) ток заряда следует понизить. Более подробно о заряде и восстановлении аккумуляторов можно прочитать в указанной ниже литературе или дополнительно обратится к авторам статьи.

Литература:
1. В. Коновалов, А.Разгильдеев. Восстановление аккумуляторов. Радиомир 2005 №3 с.7.
2. В.Коновалов. А.Вантеев. Технология гальванопластики.Радиолюбитель №9.2008.
3. В.Коновалов. Пульсирующее зарядно-восстановительное устройство Радиолюбитель № 5 /2007г. стр.30.
4. В.Коновалов. Ключевое зарядное устройство. Радиомир №9/2007 с.13.
5. Д.А.Хрусталёв. Аккумуляторы.г. Москва. Изумруд.2003 г.
6. В.Коновалов «Измерение R-вн АБ».«Радиомир» №8 2004 г. стр.14.
7. В.Коновалов «Эффект памяти снимает вольтдобавка.» «Радиомир» №10.2005 г. стр. 13.
8. В.Коновалов «Зарядно –восстановительное устройство для NI-Cd аккумуляторов.». «Радио» №3 2006 г. стр.53
9. В.Коновалов. «Регенератор АКБ». Радиомир 6/2008 стр14.
10. В.Коновалов. «Импульсная диагностика аккумулятора». Радиомир №7 2008г. стр.15.
11. В.Коновалов. «Диагностика аккумулятора сотовых телефонов». Радиомир 3/2009 11стр.
12. В.Коновалов. «Восстановление аккумуляторов переменным током» Радиолюбитель 07/2007 стр 42.
13. В.Коновалов.ЗУ для «мобильника» с цифровым таймером. Радиомир 4/2009 стр.13.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

MJE13001

1 В блокнот
VT2 MOSFET-транзистор

2SK727

1 В блокнот
VD1 Диодный мост

RS407L

1 В блокнот
VD2 Выпрямительный диод

1N4001

1 В блокнот
VD3 Стабилитрон КС175С 1 В блокнот
VD4 Выпрямительный диод

1N4005

1 В блокнот
VD5 Выпрямительный диод

1N4007

1 В блокнот
VD6 Диод S30D40C 1 В блокнот
VS1 Тиристор MSR106-6 1 В блокнот
С1-С3 Конденсатор 0.01 мкФ 400 В 3 В блокнот
С4 10 мкФ 50 В 1 В блокнот
С5 Электролитический конденсатор 83 мкФ 400 В 1 В блокнот
С6, С11 Конденсатор 220 пФ 2 В блокнот
С7 Конденсатор 10 мкФ 10 В 1 В блокнот
С8 Конденсатор 4700 пФ 1 В блокнот
С9 Электролитический конденсатор 10 мкФ 1 В блокнот
С10 Конденсатор 0.1 мкФ 1 В блокнот
С12 Электролитический конденсатор 470 мкФ 25 В 1 В блокнот
R1 Резистор

100 Ом

1 1 Вт В блокнот
R2 Резистор

220 кОм

1 В блокнот
R3 Резистор

3.3 кОм

1 В блокнот
R4 Резистор

180 кОм

1 подбор В блокнот
R5, R9 Резистор

56 Ом

2 В блокнот
R6 Резистор

96 кОм

1 В блокнот
R7 Резистор

10 кОм

1 В блокнот
R7 Резистор

100 кОм

1 подбор В блокнот
R8 Переменный резистор 470 Ом 1 В блокнот
R10 Резистор

20 кОм

1 В блокнот
R11 Резистор

2.2 Ом

1 5 Вт В блокнот
R12 Резистор

36 Ом

1


Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны - если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи - но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.


Рис. 1
Простая импульсная схема блокинг-генератора


Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт - тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних - положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает... То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ - поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора - то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II - генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока - выходное напряжение гуляет в пределах 15...25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2


Рис. 2
Электрическая схема более сложного
преобразователя


Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор, резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 - как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении - 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным - идеально BYV26C, чуть хуже - UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250...350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 - она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10...20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому - для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II - 30 витков тем же проводом, обмотка III - 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник - стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.
Скачать: Основные схемы импульсных сетевых адаптеров для зарядки телефонов
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.